siRNA-mediated Silencing of Angiotensin Type 1a Receptor ($AT_{1a}R$) Splice Variants Reveals that $AT_{1a}R$ Expression is Translationally Controlled by $AT_{1a}R$ Alternative Splicing in Rat Vascular Smooth Muscle Cells

Ali Hassan, James W. Kim, Hong Ji, Yinghua Zhang and Kathryn Sandberg

Georgetown University Medical Center, Washington, D.C.

Presenter Disclosure Information

No relationships to disclose

The Renin-Angiotensin System

There are two rat AT_{1a} receptor mRNA splice variants

Are the E1,3 and E1,2,3 splice variants differently translationally regulated?

Hypothesis:

Alternative splicing in the 5'UTR yields rAT_{1a} receptor mRNA splice variants that exhibit differences in translational regulation.

The E1,3 splice variant is more efficiently translated *in vitro* than the E1,2,3 mRNA

Question

1. Is the E1,3 mRNA translated more efficiently than the E1,2,3 mRNA in cells endogenously expressing the rAT_{1a} receptor?

E1,2,3 is the predominant rAT_{1a} receptor mRNA splice variant in tissues

Questions

- 1. Is the E1,3 mRNA translated more efficiently than the E1,2,3 mRNA in cells endogenously expressing the rAT_{1a} receptor?
- 2. What is the relative contribution of the E1,3 and E1,2,3 mRNAs to synthesis of rAT_{1a} receptor protein?

Experimental Approach

- Use small interfering RNA(siRNA)mediated RNA interference to
 specifically knockdown the E1,3 splice
 variant in Rat Aortic Smooth Muscle
 Cells (RASMC)
- 2. Measure the effect of E1,3 knockdown on AT₁ receptor binding

Small interfering RNA(siRNA)-mediated RNA interference

Design of siRNA selectively targeting the rAT_{1a} receptor E1,3 splice variant

Transfection of Rat Aortic Smooth Muscle Cells (RASMC) with siRNA

S1_{E1,3} specifically reduces the levels of E1,3 mRNA in RASMC

S1_{E1,3} treatment has a disproportionate inhibitory effect on AT₁ receptor binding

Summary

Results demonstrate that it is possible to use siRNA-mediated RNA interference to specifically knockdown the E1,3 rAT_{1a} receptor mRNA splice variant while leaving the E1,2,3 splice variant intact.

E1,3 mRNA is more efficiently translated than E1,2,3 mRNA in cells endogenously expressing the rAT_{1a} receptor.

Perspectives

These data that suggest that alternative splicing of the rAT_{1a} receptor might play a role in regulation of the expression of the rAT_{1a} receptor.

Potentially, aberrant regulation of rAT_{1a} receptor splicing could lead to pathophysiological states.

