siRNA-mediated Silencing of Angiotensin Type 1a Receptor ($AT_{1a}R$) Splice Variants Reveals that $AT_{1a}R$ Expression is Translationally Controlled by $AT_{1a}R$ Alternative Splicing in Rat Vascular Smooth Muscle Cells Ali Hassan, James W. Kim, Hong Ji, Yinghua Zhang and Kathryn Sandberg Georgetown University Medical Center, Washington, D.C. ### **Presenter Disclosure Information** No relationships to disclose ### The Renin-Angiotensin System ## There are two rat AT_{1a} receptor mRNA splice variants # Are the E1,3 and E1,2,3 splice variants differently translationally regulated? Hypothesis: Alternative splicing in the 5'UTR yields rAT_{1a} receptor mRNA splice variants that exhibit differences in translational regulation. ### The E1,3 splice variant is more efficiently translated *in vitro* than the E1,2,3 mRNA #### Question 1. Is the E1,3 mRNA translated more efficiently than the E1,2,3 mRNA in cells endogenously expressing the rAT_{1a} receptor? # E1,2,3 is the predominant rAT_{1a} receptor mRNA splice variant in tissues #### Questions - 1. Is the E1,3 mRNA translated more efficiently than the E1,2,3 mRNA in cells endogenously expressing the rAT_{1a} receptor? - 2. What is the relative contribution of the E1,3 and E1,2,3 mRNAs to synthesis of rAT_{1a} receptor protein? ### **Experimental Approach** - Use small interfering RNA(siRNA)mediated RNA interference to specifically knockdown the E1,3 splice variant in Rat Aortic Smooth Muscle Cells (RASMC) - 2. Measure the effect of E1,3 knockdown on AT₁ receptor binding ### Small interfering RNA(siRNA)-mediated RNA interference # Design of siRNA selectively targeting the rAT_{1a} receptor E1,3 splice variant ### Transfection of Rat Aortic Smooth Muscle Cells (RASMC) with siRNA # S1_{E1,3} specifically reduces the levels of E1,3 mRNA in RASMC # S1_{E1,3} treatment has a disproportionate inhibitory effect on AT₁ receptor binding ### Summary Results demonstrate that it is possible to use siRNA-mediated RNA interference to specifically knockdown the E1,3 rAT_{1a} receptor mRNA splice variant while leaving the E1,2,3 splice variant intact. E1,3 mRNA is more efficiently translated than E1,2,3 mRNA in cells endogenously expressing the rAT_{1a} receptor. ### Perspectives These data that suggest that alternative splicing of the rAT_{1a} receptor might play a role in regulation of the expression of the rAT_{1a} receptor. Potentially, aberrant regulation of rAT_{1a} receptor splicing could lead to pathophysiological states.